
Module Leader
Lecturers
Prof E Mastorakos and Dr J Massey
Lab Leader
Timing and Structure
Lent term. 16 lectures, including 2 examples classes. Assessment: 100% exam
Prerequisites
3A5, 3A6 useful but not compulsory
Aims
The aims of the course are to:
- Introduce students to fundamental combustion concepts, and their influence on internal combustion engine and gas turbine performance and emissions.
- Introduce students to the changes required to use low-carbon fuels in these engines.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand fundamental concepts in combustion
- Understand combustion issues particularly relvant to gas turbines
- Understand the performance and efficiency characteristics of IC engines
- Understand the formation and after treatment of pollutants in IC engines and gas turbines and trade-offs with performance; understand the changes associated with the switch to low-carbon fuels.
Content
Chemical thermodynamics and equilibrium (1L)
Conservation laws for multicomponent mixture, multispecies equilibrium and calculation method
Chemical kinetics (1L)
Principles of chemical kinetics – law of mass action, activation energy, order & degree of a reaction, hydrocarbon reaction chains , pollutant formation multistep reactions, chemical explosion, chemistry reduction using steady state and partial equilibrium approximations
Applications of chemical kinetics: limit reators (1L)
Common approximations used in combustion & chemical engineering analyses – perfectly stirred reactor, plug flow reactor, thermal explosions, autoignition & spark ignition
Laminar premixed flames (1L)
Concepts and measurements, conservation equations in one and multiple dimensions, characteristic time and space scales, Zeldovich number, solution for 1D flame, flame speed and its dependence on mixture composition, temperature and pressure
Laminar non-premixed flames (1L)
Mixture fraction concept and its physical significance, conserved scalar approach, state relationship, simple solution for diffusion flame, droplet evaporation & combustion as an example for diffusion flame
Pollution from combustion (1L)
Nature of pollutants emitted by combustion and their effects on environment & human health, features of pollution generation chemistry, typical techniques used for emission reduction
Turbulent combustion (1L)
A brief introduction to turbulent combustion, its importance, applications, and scientific methods used to study turbulent combustion
Fundamental concepts in internal combustion engines (1L)
Overview of energy use in transportation, evolution of internal combustion and reciprocating engines, basic concepts and definitions, ideal constant volume and constant pressure cycles, efficiency, turbocharging, and hybridisation
Spark ignition & compression ignition engines (2L)
Basic concepts and definitions, valve timing and volumetric efficiency, residual gases, intake and fuel injection systems, combustion in SI engines, knock and limits to combustion, compression ignition process parameters, combustion under autoignition, fuel injection timing, torque and emissions, principles of turbocharging and relevant physics, turbocharger matching
Hybridisation and future concepts (1L)
New developments in combustion engines. Low-carbon fuels. Hybrid powertrain concepts and designs (series, parallel), downsizing, turbocharging, electric powertrain efficiency and control concepts
Gas turbine combustion (2L)
Basic concepts, combustor aerodynamics, two-phase flows, thermoacoustics, NOx and soot trade-off, combustor architectures, hydrogen, ammonia, synthetic aviation fuels
Emissions and aftertreatment (2L)
Emissions from IC engines and gas turbines, post-combustion clean-up (three-way catalysts, selective catalytic reduction, particulate matter removal), methods of in-flame control of NOx and soot, air-fuel ratio control, exhaust gas recirculation, NOx from H2 and NH3 combustion
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 30/05/2023 15:24